
Karta Documentation
Release 1.2.0

Eyal Itkin

Apr 20, 2020

User Guide:

1 Prerequisites 1

2 Installing the Plugin 3

3 Thumbs Up 5
3.1 Introduction . 5
3.2 Firmware Files . 5
3.3 ELF Files . 6

4 Open source fingerprinting 7
4.1 Identifier Plugin . 7
4.2 Manual Identification . 8

5 Matching supported libraries 9
5.1 Prerequisites . 9
5.2 Manual Anchors . 9
5.3 Matcher Plugin - Start . 10
5.4 Matcher Plugin - Output . 10

6 Compiling a configuration file 11
6.1 Compiling the Open Source . 11
6.2 Running the script . 11
6.3 Storing the config file . 12
6.4 Uploading the config file back to the community :) . 12

7 Compilation Guidelines 13
7.1 Basic Invariant . 13
7.2 Windows Compilation . 13
7.3 Bitness - 32 vs 64 . 13
7.4 Updating the compilation notes . 14
7.5 Adding a python identifier for your library . 14

8 Adding support for a new open source 15
8.1 Sharing with the community :) . 15

9 Karta 17
9.1 Motivation . 17
9.2 Key Idea - Linker Locality . 17

i

9.3 Matching Steps . 18
9.4 Geographic Location . 18
9.5 Modularity . 18

10 Scoring Tips 19
10.1 Brief . 19
10.2 Tips . 19

11 Disassembler 21
11.1 IDA . 21
11.2 Supporting Other Disassemblers . 21

12 File Map Logic 23

13 Brief 25
13.1 Identifier . 25
13.2 Matcher . 26
13.3 Credits . 26
13.4 Links . 26
13.5 Contact . 26

ii

CHAPTER 1

Prerequisites

Karta makes extensive use of 2 python packages:

• elementals

• sark

Using the setup.py script, one can install all of these prerequisites, and be ready to go: ./setup.py install

1

https://github.com/eyalitki/elementals
https://github.com/tmr232/Sark

Karta Documentation, Release 1.2.0

2 Chapter 1. Prerequisites

CHAPTER 2

Installing the Plugin

Nothing should be done :) There is no need to copy the directory to some IDA plugin folder. Instead, once your binary
is loaded to IDA, simply start the desired plugin by loading it using the File->Script File... menu. That’s it.

3

Karta Documentation, Release 1.2.0

4 Chapter 2. Installing the Plugin

CHAPTER 3

Thumbs Up

3.1 Introduction

Karta is highly sensitive to the quality of the function analysis that was done by IDA. Therefore, we developed
Thumbs Up. This mini-plugin should be used as a pre-process phase to automatically achieve to main goals:

1. Drastic improvement of the disassembler’s analysis

2. For ARM binaries - clear seperation between ARM and THUMB code regions

More information about the script and it’s Machine-Learning-based analysis, can be found in this detailed blog post:
Thumbs Up - Using Machine Learning to improve IDA’s Analysis.

Important Note Thumbs Up performs a series of major changes to the binary on which it was invoked. We highly
recommend that you backup your original binary before executing the script. Better safe than sorry.

3.2 Firmware Files

Although the plugin was mainly designed for improving the analysis of firmware files, there are still some precondition
steps that are required before executing the script.

1. Make sure that the different code segments are clearly defined in IDA

2. Code segments (executable and not writable) will be treated differently than Data segments (non executable)

The list of code segments and data segments will be outputed to the screen (and log) at the start of the script. Once
the segments are properly configured, simply load the script file named thumbs_up/thumbs_up_firmware.py
and wait for the magic to happen.

The script’s performance heavily depends on IDA’s analysis, as well as on the different phases it has to perform. On
ARM binaries you should expect a much longer execution time than on other binaries, as it also needs to adjust the
ARM/THUMB code transitions.

5

https://research.checkpoint.com/thumbs-up-using-machine-learning-to-improve-idas-analysis

Karta Documentation, Release 1.2.0

3.3 ELF Files

Executing the script on ELF files is easier, as the ELF header already defines all the information we need for the code
segments. For ELF binaries one should load the script file named thumbs_up/thumbs_up_ELF.py and wait for
the magic to happen.

6 Chapter 3. Thumbs Up

CHAPTER 4

Open source fingerprinting

4.1 Identifier Plugin

The karta_identifier.py script identifies the existence of supported open source projects inside the given
binary, and aims to fingerprint the exact version of each located library. Once your binary was loaded to IDA, simply
load the script karta_identifier.py, and it will output the results to the output window and to an output file.
Here is an example output after running the script on an HP OfficeJet firmware:

Karta Identifier - printer_firmware.bin:
==

Identified Open Sources:

libpng: 1.2.29
zlib: 1.2.3
OpenSSL: 1.0.1j
gSOAP: 2.7
mDNSResponder: unknown

Identified Closed Sources:

Treck: unknown

Missing Open Sources:

OpenSSH: Was not found
net-snmp: Was not found
libxml2: Was not found
libtiff: Was not found
MAC-Telnet: Was not found

Final Note - Karta

(continues on next page)

7

Karta Documentation, Release 1.2.0

(continued from previous page)

If you encountered any bug, or wanted to add a new extension / feature, don't
→˓hesitate to contact us on GitHub:
https://github.com/CheckPointSW/Karta

As can be seen, the output includes 3 parts:

1. List of identified open source libraries, with their version if identified or “unknown” if failed to identify it

2. List of identified closed source libraries

3. List of missing open source libraries, so that you will know what libraries are supported by the identifier at the
moment

4.2 Manual Identification

Sometimes we would like to feed Karta with some knowledge we already acquired about the matched open source.
When Karta locates a library, but fails to identify it’s exact version, we can manually tell it the version so the matcher
could match it. For example, in the above example we could manually configure the version for the “mDNSResponder”
library which we located, but failed to identify.

User defined library versions can be declared by running the karta_manual_identifier.py in the command
line, using the following arguments:

C:\Users\user\Documents\Karta\src>python karta_manual_identifier.py --help
usage: karta_manual_identifier.py [-h] [-D] bin

Enables the user to manually identify the versions of located but unknown
libraries, later to be used by Karta's Matcher.

positional arguments:
bin path to the disassembler's database for the wanted binary

optional arguments:
-h, --help show this help message and exit
-D, --debug set logging level to logging.DEBUG

The script will store the configurations in a *_knowledge.json file near the disassembler’s database file.

Note: After we manually identify the version of a previously located but unknown library, future calls to the identifier
plugin will use our supplied version automatically.

8 Chapter 4. Open source fingerprinting

CHAPTER 5

Matching supported libraries

5.1 Prerequisites

Identifier

It is always recommended to start with the identifier script, so you would know if you already have pre-compiled
configurations for all the libraries you need. In case it is needed, a guide for compiling a new configuration can be
found in the next section.

Function Analysis - Thumbs Up

Karta is highly sensitive to the quality of the function analysis that was done by IDA. It is important to make sure
that the matcher plugin is invoked only after the binary is well analyzed. For example: even if there is an un-reffed
code snippet, make sure that IDA marked it as a function if it is an un-reffed function. It is highly recommended to
use Thumbs Up for automatic improvement of IDA’s analysis.

5.2 Manual Anchors

Sometimes we would like to feed Karta with some knowledge we already acquired about the matched open source.
In this case we can define “manual anchors”, and Karta will use them as part of the initial anchors list. User defined
anchors can be declared by running the karta_manual_anchor.py in the command line, using the following
arguments:

C:\Users\user\Documents\Karta\src>python karta_manual_anchor.py --help
usage: karta_manual_anchor.py [-h] [-D] [-W] bin lib-name lib-version configs

Enables the user to manually defined matches, acting as manual anchors, later
to be used by Karta's Matcher.

positional arguments:
bin path to the disassembler's database for the wanted binary
lib-name name (case sensitive) of the relevant open source library

(continues on next page)

9

Karta Documentation, Release 1.2.0

(continued from previous page)

lib-version version string (case sensitive) as used by the identifier
configs path to the *.json "configs" directory

optional arguments:
-h, --help show this help message and exit
-D, --debug set logging level to logging.DEBUG
-W, --windows signals that the binary was compiled for Windows

The script will store the configurations in a *_knowledge.json file near the disassembler’s database file.

5.3 Matcher Plugin - Start

Assuming you are all set and ready to go, and that your binary is already open in IDA, load the karta_matcher.py
script and set up the needed configurations:

• Full path for Karta’s configuration directory - the configs dir with all of the *.json files

• In case of a binary that was compiled for Windows, set up the checkbox (not required for firmware binaries)

Once again, the output will be shown in IDA’s output window, and will also be stored to a file. Every matched open
source library will open 2 windows:

1. Window with the match results from the library

2. Window with the proposed match results for external (usually libc) functions, used by the open source library

5.4 Matcher Plugin - Output

The matched library functions include the reason for the matching. As some matching rules are much more accurate
than others, they are colored in dark-green, while the others are marked in green. You can now select a subset of
matches, right click, and export the selected matches to be names in IDA. Or, you can simply right click and import
all of the matches directly to IDA.

The matching process is relatively fast (less than a minute for a small-medium open source), however no user in-
teraction is needed after each library is matched, so you can also run it at night and check all of the results in the
morning.

10 Chapter 5. Matching supported libraries

CHAPTER 6

Compiling a configuration file

6.1 Compiling the Open Source

Adding support for a new version for an already supported library, requires only to compile a new (*.json) con-
figuration file for it. As Karta is a source code assisted plugin, this process requires you to compile the open source
library according to the guidelines of the open source project, together with the specific guidelines that can be found
in the compilations directory.

Important: Karta will need two compiled parts for building the configuration

1. A static library - .a in Linux, and .lib in Windows

2. A folder containing all of the *.o (in Linux) or *.obj (in Windows) files

Note: Some libraries, such as OpenSSL, are split to several static libraries. In this case you should make sure you
found all of the parts for each such static library

6.2 Running the script

Now that we have all of the parts, we should run karta_analyze_src.py in the command line, using the follow-
ing arguments:

C:\Users\user\Documents\Karta\src>python karta_analyze_src.py --help
usage: karta_analyze_src.py [-h] [-D] [-N] [-W]

lib-name lib-version dir archive [dir archive ...]

Compiles a *.json configuration file for a specific version of an open source
library, later to be used by Karta's Matcher.

positional arguments:
lib-name name (case sensitive) of the open source library
lib-version version string (case sensitive) as used by the identifier
dir archive directory with the compiled *.o / *.obj files + path to

(continues on next page)

11

Karta Documentation, Release 1.2.0

(continued from previous page)

the matching *.a / *.lib file (if didn't use "--no-
archive")

optional arguments:
-h, --help show this help message and exit
-D, --debug set logging level to logging.DEBUG
-N, --no-archive extract data from all *.o / *.obj files in the directory
-W, --windows signals that the binary was compiled for Windows

Note: The script must be executed from Karta’s src directory.

1. Name of the open source library (case sensitive)

2. Version of the library (as will be identified by the identifier script)

3. Path to the directory that contains the compiled (*.o / *.obj) files

4. Path to the compiled static library file (if “–no-archive” wasn’t used) In case there are multiple static libraries,
simply extend the list of “dir archive” (with archive) or list of “dir” (without archive), depending on the “–no-
archive” flag)

The script will ask you for the path to your disassembler (IDA), and will suggest a default path. Enter the path to your
disassembler, press ENTER, and a progress bar will show you the progress of the script.

6.3 Storing the config file

In the end, a new *.json file will be generated (using the library name + version), and it should be stored together
with the rest of the configuration files in the configs directory.

6.4 Uploading the config file back to the community :)

So, you created a new config file and it works on your setup, Good Job :)

Please consider submitting it to the community collection of configurations and fingerprints. Feel free to submit it as
a pull request for now, and in the future we might update it to a separate repository.

12 Chapter 6. Compiling a configuration file

CHAPTER 7

Compilation Guidelines

7.1 Basic Invariant

Karta’s main compilation assumption is that the source compilation can’t modify (inline / split to parts) a function if
the wanted binary hadn’t done the exact modification to this function. This means that:

1. A function can be modified (inlined) in the binary even if we didn’t inline it in our “source” compilation

2. If a function was modified in our “source” compilation, it must be modified in the same way in our wanted
binary

Since we want to maintain this basic invariant, we usually want to compile our open source library with flags for:

• No inlining

• No compiler optimizations

7.2 Windows Compilation

It seems that when compiling a binary using nmake or visual studio, the Window’s compilation adds some
linker optimizations. As we couldn’t imitate these linker optimizations when compiling with gcc, Karta can (and
should) support 2 different configurations for the same version of a specific library:

1. Basic (unix) configuration - Used for Linux, Mac, of various firmware files

2. Windows configuration

7.3 Bitness - 32 vs 64

After various testing rounds, it seems that a configuration for 32 bits can also achieve great matching results for 64 bit
binaries. Therefor there is no need to maintain two different configurations files, one for each bitness mode. When
compiling a configuration file, the rule of thumb should be:

13

Karta Documentation, Release 1.2.0

• Basic (unix) based configurations should be compiled for 32 bits (-m32) - firmware binaries are usually 32 bits

• Windows configurations should be compiled for 64 bits

7.4 Updating the compilation notes

After a successful compilation was made, a new “compilation tips” file should be created and stored under the
compilations folder. The file’s name should be <library name>.txt and it should have a similar struc-
ture as the already existing files.

7.5 Adding a python identifier for your library

As most of the open source projects have unique string identifiers that hold their exact version, all of the currently
supported fingerprinting plugins are based on a basic string search.

searchLib(): Scans all of the strings in the binary (using the self._all_strings singleton), in search for a key
string (holding the version) or a unique library string that is stored locally near a clear version string.

identifyVersions(): Will be called only after searchLib had identified the existence of the library in the binary.
This function is responsible for parsing the exact library version, usually using the self._version_string that
was found by searchLib.

14 Chapter 7. Compilation Guidelines

CHAPTER 8

Adding support for a new open source

Support consists of two parts:

1. A fingerprint *.py file with the logic required for locating the library

2. An initial configuration file for a chosen version

Compiling the configuration is done exactly as described in the prior section. However, you should make sure to
document the flags you changed in the project’s Makefile, by storing your guidelines in the compilations folder
under a new *.txt file named after your open source library.

Adding a new *.py file for the identification script is rather simple. The needed steps are:

1. Copy some existing file from the libs folder (libpng.py for instance) to a new *.py file with the name of
your library, and place it too under the libs folder

2. Update the __init__.py file with your library, and place your new import line at the end of the list

3. Update the name of the class

4. Update the NAME variable, with an exact string name (case sensitive)

5. Update the logic of searchLib() method - currently based on a basic string search

6. If needed, update the logic of the identifyVersions() method

8.1 Sharing with the community :)

So, you just added support for a new library, and it worked on your setup. Good Job :)

Please consider submitting it to the community collection of configurations and fingerprints. Feel free to submit it as
a pull request for now, and in the future we might update it to a separate repository.

15

Karta Documentation, Release 1.2.0

16 Chapter 8. Adding support for a new open source

CHAPTER 9

Karta

9.1 Motivation

The main motivation for developing Karta was the need to identify open sources in large firmware files. My previous
experience with other available tools (at the time) was that they have a memory blowup when dealing with large
binaries, meaning that sometimes they will completely crash and give no results :(

If we could work with a subset of functions, that will be polynomial to M (number of functions in the open source)
and not in N (number of functions in the binary) we could escape the limitations that arise when M << N. And this
was the main idea.

9.2 Key Idea - Linker Locality

Matching two functions (src and dest) is usually done after converting them into some “canonical” representation. We
aim to narrow our search space, and to convert only a minimal set of binary functions into their canonical representa-
tion. And here comes the linker to our rescue:

• The compiler usually compiles each source file (.c / .cpp) into a single binary file (.o or .obj depending on the
compiler)

• The linker then attaches them all together into a single blob

• This blob will be inserted to the firmware as is

conclusion #1: The compiled open source will be contained in a single contiguous blob inside the firmware / exe-
cutable.

conclusion #2: Once we find a single representative of that blob (a.k.a anchor), we can speculate about the lower and
upper bound of this blob in the binary, according to the number of functions we know that should be in the blob

17

Karta Documentation, Release 1.2.0

9.3 Matching Steps

Using these conclusions, Karta matches each open source using the following steps:

1. Fingerprint: Identify the existence of the open source, and the version that is being used

2. Search for anchor functions: functions with unique and rare artifacts (strings or consts)

3. Draw basic file boundaries: a map for each located file, and overall scope for the entire open source

4. Use file hints: search and match functions that contain a string with their source file name

5. Locate agents: functions with file-unique artifacts (minor anchors)

6. Regular score-based matching:

• Scoring similarities

• Control Flow Graph (CFG) analysis

• Note: gives special attention for geographic location

9.4 Geographic Location

Compilers tend (when they are nice) to preserve the order of the functions in the compiled binary. For example, if
“foo()” was defined after “bar()” in the same source file, the compiled “foo” will usually be found right after the com-
piled “bar”. This means that our matching and scoring logic will pay special attention to geographic characteristics:

1. Possible matching candidates must reside in the same file as our source function

2. Adaptively boost the score of neighbours (according to seen matching history)

3. Use neighbours to “discover” new matching candidates

4. Static functions shouldn’t be referenced by functions from other files / outside of our open source

9.5 Modularity

Using these basic concepts, Karta was designed to be modular, to allow other matching libraries to use the basic file
mapping logic.

18 Chapter 9. Karta

CHAPTER 10

Scoring Tips

10.1 Brief

During the work on Karta I learned quite a few lessons about the nature of scoring algorithms for binary matching.
This section will include a list of the tips I found useful, hoping they could help other researchers / developers as well.

10.2 Tips

1. Anchor functions can easily generate many matches later on.

2. Finding anchor functions should be done without any dependency on the way we later on match additional
functions. Anchor functions are too important to be missed by optimizations.

3. The compiler can sometimes mess around with the order of the functions inside a single compiled binary file.
However, it tends to keep the existing order as-is.

4. Don’t give (non-constant) positive scoring to artifacts when there is a reasonable scenario in which low mean-
ingfully different functions receive a “match” score only because of this artifact. For example: number of
instructions, frame size, etc.

5. Don’t jump to make score-based decisions. Round up all of the possible matching candidates, and only pick the
promising ones - those who receive enough score points and are way ahead of their competitors.

6. Functions can be be complicated, store a full call order (path per ref, all paths per call), otherwise the call order
will trigger a False Positive (a.k.a. FP).

7. Try to adaptively learn the characteristics of the matched binary through the eyes of matched couples. For
example: does the compiler maintained function locality (matching neighbours)? what is the ratio between the
instructions in the binary and the source?

8. Adaptive scoring changes after every match, we can’t assume that a change in score implies we should double
check / match our candidates.

9. Give bonus score for “exact matching” feature: all (>1) consts matched, all (>1) strings matched, num calls (>1)
matched, . . .

19

Karta Documentation, Release 1.2.0

10. Small functions contain limited scoring artifacts. Double their score so they would have the chance to reach the
scoring threshold.

11. Code blocks score is tightly coupled with instruction score, and their sum should be scored accordingly (they
shouldn’t be handled separately).

12. We can’t assume we know the file order in advance, we will have to deduce it on the flight.

13. Using information from the single compiled files, we can see what functions are exported. Non-exported (static)
functions can NOT be referenced by the integrating project (or even other library files when there is no inlining
in the binary), and we can rely on this fact when we filter our candidates.

14. Large leftovers can lead to false flagging of an external function as an internal one. This mainly means we are
prone to errors when two libraries are adjacent and use one another. It also means that several parts of the same
library must be handled together (as was done in OpenSSL).

15. Scoring based on calls is good, however if we know that these calls are to the wrong functions (using knowledge
from previous matches) we should update our score.

16. On Windows there are linker optimizations, and they really mess-up the call graphs and the assumptions about
locality / static functions.

17. Basic support for linker optimizations (by detecting collision groups) can drastically improve the matching
results.

20 Chapter 10. Scoring Tips

CHAPTER 11

Disassembler

11.1 IDA

On it’s initial version Karta was developed as an IDA plugin. However, the disassembler is mainly used for extracting
artifacts from functions during the creation of the canonical representation. During this phase, we mainly use sark.

11.2 Supporting Other Disassemblers

Since Karta was developed to be modular, and because one of our researchers (Itay) mainly uses radare2, we added
the ability to support other disassemblers.

The src\disassembler\disas_api.py file defines the interface needed by Karta, and can be split to 3 main
parts (as can be seen inside the folder src\disassembler\IDA):

1. Basic API - finding the name of a function, getting a segment list, etc.

2. Cmd API - functionality for activating the disassembler from the command line.

3. Verifier API - key integration point for the factory to be able to decide inside which disassembler are we being
run at the current moment.

4. Analysis API - core logic needed for creating the canonical representation of a function.

While the first 3 parts can be easily implemented as empty adapters without any logic, the 4th part is a bit more
complex. We recommend developers to read the code from src\disassembler\IDA\ida_analysis_api.
py as an example implementation, when trying to implement the same functionality in the added disassembler.

21

https://github.com/tmr232/Sark
https://twitter.com/megabeets_?lang=en

Karta Documentation, Release 1.2.0

22 Chapter 11. Disassembler

CHAPTER 12

File Map Logic

The file map, and the logic that is implemented on top of it, is the key concept of Karta. While different implementa-
tions can use different scoring algorithms, and use different matching tactics, we believe that the file map can be used
in other binary matching tools as well.

Having that in mind, we built our matching engine out of 2 main parts:

1. File Layer - describes the file map, and the ability to define a file in a given scope, mark functions inside as
matched, etc.

2. Matching Engine - Basic matching engine that initializes the file map using anchors, including the logic needed
in order to find those anchors.

As one can see, these 2 parts can be used by other matching tools, and so we’ve put them inside the src\core
folder. The additional logic that Karta adds on top of these layers, such as file based matching tactics (searching for
neighbours), or matching steps, is implemented in other classes that inherits from these basic class (and carry the same
name).

We hope that other matching tools could integrate our file map logic, and hopefully will profit from it as well.

/$$ /$$ /$$
| $$ /$$/ | $$
| $$ /$$/ /$$$$$$ /$$$$$$ /$$$$$$ /$$$$$$
| $$$$$/ |____ $$ /$$__ $$|_ $$_/ |____ $$
| $$ $$ /$$$$$$$| $$ __/ | $$ /$$$$$$$
| $$\ $$ /$$__ $$| $$ | $$ /$$ /$$__ $$
| $$ \ $$| $$$$$$$| $$ | $$$$/| $$$$$$$
|__/ __/ _______/|__/ ___/ _______/

23

Karta Documentation, Release 1.2.0

24 Chapter 12. File Map Logic

CHAPTER 13

Brief

“Karta” (Russian for “Map”) is an IDA Python plugin that identifies and matches open-sourced libraries in a given
binary. The plugin uses a unique technique that enables it to support huge binaries (>200,000 functions), with almost
no impact over the overall performance.

The matching algorithm is location-driven. This means that it’s main focus is to locate the different compiled files,
and match each of the file’s functions based on their original order within the file. This way, the matching depends on
K (number of functions in the open source) instead of N (size of the binary), gaining a significant performance boost
as usually N >> K.

We believe that there are 3 main use cases for this IDA plugin:

1. Identifying a list of used open sources (and their versions) when searching for a useful 1-Day

2. Matching the symbols of supported open sources to help reverse engineer a malware

3. Matching the symbols of supported open sources to help reverse engineer a binary / firmware when searching
for 0-Days in proprietary code

13.1 Identifier

Karta’s identifier is a smaller plugin that identifies the existence, and fingerprints the versions, of the existing (sup-
ported) open source libraries within the binary. No more need to reverse engineer the same open-source library
again-and-again, simply run the identifier plugin and get a detailed list of the used open sources. Karta currently
supports more than 10 open source libraries, including:

• OpenSSL

• Libpng

• Libjpeg

• NetSNMP

• zlib

• etc.

25

Karta Documentation, Release 1.2.0

13.2 Matcher

After identifying the used open sources, one can compile a .json configuration file for a specific library (libpng
version 1.2.9 for instance). Once compiled, Karta will automatically attempt to match the functions (symbols) of the
open source in the loaded binary. In addition, in case your open source used external functions (memcpy, fread, or
zlib_inflate), Karta will also attempt to match those external functions as well.

13.3 Credits

This project was developed by me (see contact details below) with help and support from my research group at Check
Point (Check Point Research).

13.4 Links

• https://github.com/CheckPointSW/Karta

• https://research.checkpoint.com/karta-matching-open-sources-in-binaries/

• https://research.checkpoint.com/thumbs-up-using-machine-learning-to-improve-idas-analysis

13.5 Contact

• @EyalItkin

• eyalit at checkpoint dot com

26 Chapter 13. Brief

https://github.com/CheckPointSW/Karta
https://research.checkpoint.com/karta-matching-open-sources-in-binaries/
https://research.checkpoint.com/thumbs-up-using-machine-learning-to-improve-idas-analysis
https://twitter.com/EyalItkin

	Prerequisites
	Installing the Plugin
	Thumbs Up
	Introduction
	Firmware Files
	ELF Files

	Open source fingerprinting
	Identifier Plugin
	Manual Identification

	Matching supported libraries
	Prerequisites
	Manual Anchors
	Matcher Plugin - Start
	Matcher Plugin - Output

	Compiling a configuration file
	Compiling the Open Source
	Running the script
	Storing the config file
	Uploading the config file back to the community :)

	Compilation Guidelines
	Basic Invariant
	Windows Compilation
	Bitness - 32 vs 64
	Updating the compilation notes
	Adding a python identifier for your library

	Adding support for a new open source
	Sharing with the community :)

	Karta
	Motivation
	Key Idea - Linker Locality
	Matching Steps
	Geographic Location
	Modularity

	Scoring Tips
	Brief
	Tips

	Disassembler
	IDA
	Supporting Other Disassemblers

	File Map Logic
	Brief
	Identifier
	Matcher
	Credits
	Links
	Contact

